Distributions of Parameters and Features of Multiple Bond Ruptures in Force Spectroscopy by Atomic Force Microscopy

نویسندگان

  • Senli Guo
  • Nan Li
  • Nimit Lad
  • Shivam Desai
  • Boris B. Akhremitchev
چکیده

Force spectroscopy measurement of rupture forces of bound molecules becomes an important physicochemical tool in characterizing intermolecular interactions. Atomic force microscopy (AFM) measurements are among the most common approaches in implementation of this technique. Kinetic information about the molecular bond under study is usually extracted assuming that the detected rupture force comes from rupturing of a single bond. However, multiple bond ruptures might occur in experiments. In this article, we consider how the presence of multiple bonds is manifested in the distribution of parameters that are typically extracted in force spectroscopy experiments. Of particular interest here are the distributions of rupture forces and Kuhn lengths of polymeric tethers. We show that multiple bond ruptures might contribute to the measured distributions even when these distributions have a well-defined single peak. Also, we consider how the probability to form multiple bonds depends on probe velocity. The developed analytical models are applied to experimental data of biotin-streptavidin ruptures. The velocity dependence of the amplitude of high force tail supports the hypothesis of multiple bond nature of the measured high forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of multiple-bond ruptures on kinetic parameters extracted from force spectroscopy measurements: revisiting biotin-streptavidin interactions.

Force spectroscopy measurements of the rupture of the molecular bond between biotin and streptavidin often results in a wide distribution of rupture forces. We attribute the long tail of high rupture forces to the nearly simultaneous rupture of more than one molecular bond. To decrease the number of possible bonds, we employed hydrophilic polymeric tethers to attach biotin molecules to the atom...

متن کامل

Application of Scanning Electron and Atomic Force Mode Microscopy on inscription from Proto-Elamite period in Tappeh Sofalin

The study of cultural heritage artifacts and the research of a protection and restoration intervention create with - and are often limited to - a complete characterization of their surface. This is not only factual for museum objects, but also for archaeological artifacts, because the object as it was discovered may contain precious unknown information that could be lost by too much aggressive ...

متن کامل

Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters

In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Direct observation of the anchoring process during the adsorption of fibrinogen on a solid surface by force-spectroscopy mode atomic force microscopy.

Atomic force microscopy in a force-spectroscopy mode has been used to investigate the kinetics of the adsorption process of fibrinogen molecules on a silica surface. An original "approach/retraction" cycle of the tip/surface was used for this purpose. Fibrinogen molecules were adsorbed on the atomic force microscopy tip and were brought into contact with the silica surface for different interac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010